Values of integer-valued multiplicative functions in residue classes
نویسندگان
چکیده
منابع مشابه
On Multiplicative Semigroups of Residue Classes
The set of residue classes, modulo any positive integer, is commutative and associative under the operation of multiplication. The author made the conjecture: For each finite commutative semigroup, S, there exists a positive integer, n, such that S is isomorphic with a subsemigroup of the multiplicative semigroup of residue classes (mod n). (A semigroup is a set closed with respect to a single-...
متن کاملInteger-valued continuous functions
© Bulletin de la S. M. F., 1969, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...
متن کاملInteger-valued definable functions
We present a dichotomy, in terms of growth at infinity, of analytic functions definable in the real exponential field which take integer values at natural number inputs. Using a result concerning the density of rational points on curves definable in this structure, we show that if a function f : [0,∞) → R is such that f(N) ⊆ Z, then either sup|x̄|≤r f(x̄) grows faster than exp(r), for some δ > 0,...
متن کاملMean values of multiplicative functions
Let f(n) be a totally multiplicative function such that |f(n)| ≤ 1 for all n, and let F (s) = ∑∞ n=1 f(n)n−s be the associated Dirichlet series. A variant of Halász’s method is developed, by means of which estimates for ∑N n=1 f(n)/n are obtained in terms of the size of |F (s)| for s near 1 with 1. The result obtained has a number of consequences, particularly concerning the zeros of the p...
متن کاملMultiplicative complexity of vector valued Boolean functions
We consider the multiplicative complexity of Boolean functions with multiple bits of output, studying how large a multiplicative complexity is necessary and sufficient to provide a desired nonlinearity. For so-called ΣΠΣ circuits, we show that there is a tight connection between error correcting codes and circuits computing functions with high nonlinearity. Combining this with known coding theo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 1977
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa-32-2-179-182